Product Description

 

Product Description

Process Description:

The basic principle of air separation is use cryogenic rectification to condense air into liquid and separate the air according to the evaporation temperature of each component. The two-stage rectification tower simultaneously obtains pure nitrogen and pure oxygen at the top and bottom of the upper tower. It is also possible to take out liquid oxygen and liquid nitrogen from the evaporation side and the condensation side of the main cooling respectively. The air separation in the rectification tower is divided into 2 stages, air is separated for the first time in the lower tower to obtain liquid nitrogen and at the same time obtain oxygen-enriched liquid air. The oxygen-enriched liquid air is sent to the upper tower for rectification to obtain pure oxygen and pure nitrogen. The upper tower is divided into 2 sections: with the liquid-air inlet as the boundary, the upper part
is the rectification section, which rectifies the rising gas, recovers the oxygen component, and purifies the nitrogen purity, and the lower section is the stripping section to remove the nitrogen components in the liquid, separated to improve the oxygen purity of the liquid.

 

MAIN PARTS FUNCTION
Air Compression System Air be compressed to 0.5-0.7 Mpa by air compressor, Imported centrifugal air compressor, high efficiency, low consumption, stable and reliable operation
 
Pre-cooling System The air is pre-cooled to 5-10ºC in the pre-cooling unit, and the moisture is separated. The original imported screw refrigeration compressor and the air-conditioning unit combined with all imported refrigeration components are equipped with a water separator, manual and imported automatic drains to drain water regularly.
Air Purification System Removing the remained moisture, carbon dioxide and hydrocarbons of compressed air in the molecular sieve purifier. The purifier adopts a vertical single-layer bed with simple and reliable structure and low resistance loss; built-in filter, blowing off and purifier regeneration at the same time; high-efficiency electric heater ensures complete regeneration of molecular sieve
Turbo Expander System The air expands and cools in the turbo expander and provides the cooling capacity required by the device.The turbo expander adopts gas bearing, which is simple and reliable, easy to operate, and high efficiency. The cold box of the expander is set separately
Heat Exchange System The air exchanges heat with the refluxing oxygen, nitrogen, and dirty nitrogen in the heat exchanger of the fractionation tower, and is cooled close to the liquefaction temperature, and the refluxed oxygen, nitrogen, and dirty nitrogen are repeatedly heat exchanged to the ambient temperature
Filling System Single gas production: Internal compression process ( Cryogenic liquid pump, High pressure vaporizer, Filling manifold).Multi-gas production: External compression process (Oxygen & nitrogen & argon booster, Filling manifold).
 

 

Product Parameters

Liquid oxygen capacity 30NM3/H – 40000NM3/H
Liquid oxygen purity  ≥99.6%
Liquid nitrogen capacity: 30NM3/H – 40000NM3/H
Liquid nitrogen purity  ≥99.99%
Liquid argon capacity 30NM3/H – 1350NM3/H
Liquid argon purity ≤2PPmO2, ≤3PPmN2

  1. Economic comparison:

the energy consumption of cryogenic air separation is low

2. Maintenance comparison:

PSA also has advantages over low temperature oxygen generators in equipment startup and shutdown and unit maintenance

3. Capacity comparison:

PSA’s maximum oxygen production capacity is 200 cubic meters, and
cryogenic technology ranges from 50 cubic CHINAMFG to 50,000 cubic meters.

4. Purity comparison:

PSA oxygen purity is 93-95, cryogenic technology purity is 99.6

 

Application

  Medical treatment                  Mining and mineral processing           Iron and steel industry

     Aerospace industry                       Metal cutting welding                         Chemical industry

Certifications

 

 

Company Profile

ZheJiang Junfang Machinery Equipment Co., Ltd.

ZheJiang Junfang Mechanical Equipment Co., Ltd., founded in 2008. Its main products include nitrogen generator, oxygen generator,ammonia decomposition hydrogen production, and PSA technology applied to gas manufacturing equipment. The company has a professional R&D and technical team. 

Professional technical support is the driving force for the company’s sustainable development. On the 1 hand, we summarized in practice, found problems, improved technology and improved technology through communication between technicians and customers. At the same time, pay attention to the development of industry technology and learn new technologies.

We also communicate with advanced enterprises in the world. We cooperate with advanced Japanese food companies to jointly break through the application of nitrogen in production. We also provide equipment for CHINAMFG enterprises in South Korea. We have also cooperated with many university research offices in China to improve our technology.

01   TECHNICAL KEYFACTS
About 100 experienced engineers
Key technical staffs worked in the industry for over 30 years
More than 50 technical patents
Designed over 300 ASP projec

02    FACTORY KEY FACTS
Multiple warehouse factory covers area over 100,000m2.
Advanced production equipment and thorough inspection procedures.
Vanious product lines such as distilation towers, heat exchangers, storage tanks, compressors, etc.
Capable of manufacture coldbox components for up to 80 000Nm3/h ASPs.

03   INSTALLATION KEY FACTS

Outstanding cost quality ratio
Flexible and minimized construction period.
Installed nearly 200 ASPs
More than 50 experienced site installers

04   SERVICEKEY FACTS
All past ASPs open for client visits.
Thorough ASP operation instruction.
Remote monitoring system.
Regularly after sale visit to help clients on-site.

 

 

Packaging & Shipping

 

FAQ

Q1:What is your product name?
A: 99.999% purity Cryogenic Air Oxygen Nitrogen Argon Hydrogen Helium Xenon Separation Plant for industrial and medical

Q2: Are you manufacturer or trade company? 
A:We are professional gas generator factory ,we produce oxygen generator, nitrogen generator, hydrogen generator.

Q3: How many oxygen plants do you produce every month?
A: We can produce 10 pcs every month.

Q4: Can you provide sample? 
A: Yes, we welcome sample order to test and check quality. Mixed samples are acceptable.

Q5: How to get a prompt quotation of Oxygen Generator? 
A: When you send inquiry to us, please kindly send it with below technical information.
1) O2 flow rate: _____Nm3/hr( or How many cylinders do you want to fill per day(24hours))
2) O2 purity: _____%
3) O2 discharge pressure: _____Bar
4) Voltages and Frequency : ______V/PH/HZ
5) Application:
6) Project Location:

    Contact Rita: 15238694529

 

 

 

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Usage: Nitrogen, Oxygen
Purpose: Gas separation
Parts: Filters
Application Fields: New Energy
Noise Level: Low
Machine Size: Large
Samples:
US$ 100000/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Can Gas Air Compressors Be Used in Construction Projects?

Gas air compressors are widely used in construction projects due to their portability, versatility, and ability to provide the necessary compressed air for various applications. They are an essential tool in the construction industry, enabling the efficient and effective operation of pneumatic tools and equipment. Here’s a detailed explanation of how gas air compressors are used in construction projects:

1. Powering Pneumatic Tools:

Gas air compressors are commonly used to power a wide range of pneumatic tools on construction sites. These tools include jackhammers, nail guns, impact wrenches, concrete breakers, air drills, sanders, grinders, and paint sprayers. The compressed air generated by the gas air compressor provides the necessary force and power for efficient operation of these tools, enabling tasks such as concrete demolition, fastening, surface preparation, and finishing.

2. Air Blow and Cleaning Operations:

In construction projects, there is often a need to clean debris, dust, and dirt from work areas, equipment, and surfaces. Gas air compressors are used to generate high-pressure air for air blow and cleaning operations. This helps maintain cleanliness, remove loose materials, and prepare surfaces for further work, such as painting or coating.

3. Operating Pneumatic Systems:

Gas air compressors are employed to operate various pneumatic systems in construction projects. These systems include pneumatic control devices, pneumatic cylinders, and pneumatic actuators. Compressed air from the gas air compressor is used to control the movement of equipment, such as gates, doors, and barriers, as well as to operate pneumatic lifts, hoists, and other lifting mechanisms.

4. Concrete Spraying and Shotcreting:

Gas air compressors are utilized in concrete spraying and shotcreting applications. Compressed air is used to propel the concrete mixture through a nozzle at high velocity, ensuring proper adhesion and distribution on surfaces. This technique is commonly employed in applications such as tunnel construction, slope stabilization, and repair of concrete structures.

5. Sandblasting and Surface Preparation:

In construction projects that require surface preparation, such as removing old paint, rust, or coatings, gas air compressors are often used in conjunction with sandblasting equipment. Compressed air powers the sandblasting process, propelling abrasive materials such as sand or grit onto the surface to achieve effective cleaning and preparation before applying new coatings or finishes.

6. Tire Inflation and Equipment Maintenance:

Gas air compressors are utilized for tire inflation and equipment maintenance on construction sites. They provide compressed air for inflating and maintaining proper tire pressure in construction vehicles and equipment. Additionally, gas air compressors are used for general equipment maintenance, such as cleaning, lubrication, and powering pneumatic tools for repair and maintenance tasks.

7. Portable and Remote Operations:

Gas air compressors are particularly beneficial in construction projects where electricity may not be readily available or feasible. Portable gas air compressors provide the flexibility to operate in remote locations, allowing construction crews to utilize pneumatic tools and equipment without relying on a fixed power source.

Gas air compressors are an integral part of construction projects, facilitating a wide range of tasks and enhancing productivity. Their ability to power pneumatic tools, operate pneumatic systems, and provide compressed air for various applications makes them essential equipment in the construction industry.

air compressor

Can Gas Air Compressors Be Used for Sandblasting?

Yes, gas air compressors can be used for sandblasting. Sandblasting is a process that involves propelling abrasive materials, such as sand or grit, at high speeds to clean, etch, or prepare surfaces. Here’s a detailed explanation:

1. Compressed Air Requirement:

Sandblasting requires a reliable source of compressed air to propel the abrasive material. Gas air compressors, particularly those powered by gasoline or diesel engines, can provide the necessary compressed air for sandblasting operations. The compressors supply a continuous flow of compressed air at the required pressure to propel the abrasive material through the sandblasting equipment.

2. Portable and Versatile:

Gas air compressors are often portable and can be easily transported to different job sites, making them suitable for sandblasting applications in various locations. The portability of gas air compressors allows flexibility and convenience, especially when sandblasting needs to be performed on large structures, such as buildings, tanks, or bridges.

3. Pressure and Volume:

When selecting a gas air compressor for sandblasting, it is essential to consider the required pressure and volume of compressed air. Sandblasting typically requires higher pressures to effectively propel the abrasive material and achieve the desired surface treatment. Gas air compressors can provide higher pressure outputs compared to electric compressors, making them well-suited for sandblasting applications.

4. Compressor Size and Capacity:

The size and capacity of the gas air compressor should be chosen based on the specific requirements of the sandblasting project. Factors to consider include the size of the sandblasting equipment, the length of the air hose, and the desired duration of continuous operation. Selecting a gas air compressor with an appropriate tank size and airflow capacity ensures a consistent supply of compressed air during sandblasting.

5. Maintenance Considerations:

Regular maintenance is crucial for gas air compressors used in sandblasting applications. The abrasive nature of the sand or grit used in sandblasting can introduce particles into the compressor system, potentially causing wear or clogging. Regular inspection, cleaning, and maintenance of the compressor, including filters, valves, and hoses, help prevent damage and ensure optimal performance.

6. Safety Precautions:

When using gas air compressors for sandblasting, it is essential to follow appropriate safety precautions. Sandblasting generates airborne particles and dust, which can be hazardous if inhaled. Ensure proper ventilation, wear appropriate personal protective equipment (PPE), such as respiratory masks, goggles, and protective clothing, and follow recommended safety guidelines to protect the operator and others in the vicinity.

In summary, gas air compressors can be effectively used for sandblasting applications. They provide the necessary compressed air to propel abrasive materials, offer portability and versatility, and can deliver the required pressure and volume for efficient sandblasting operations. Proper compressor selection, maintenance, and adherence to safety precautions contribute to successful and safe sandblasting processes.

air compressor

What Fuels Are Commonly Used in Gas Air Compressors?

Gas air compressors can be powered by various fuels depending on the specific model and design. The choice of fuel depends on factors such as availability, cost, convenience, and environmental considerations. Here’s a detailed explanation of the fuels commonly used in gas air compressors:

1. Gasoline:

Gasoline is a widely used fuel in gas air compressors, particularly in portable models. Gasoline-powered compressors are popular due to the widespread availability of gasoline and the convenience of refueling. Gasoline engines are generally easy to start, and gasoline is relatively affordable in many regions. However, gasoline-powered compressors may emit more exhaust emissions compared to some other fuel options.

2. Diesel:

Diesel fuel is another common choice for gas air compressors, especially in larger industrial models. Diesel engines are known for their efficiency and durability, making them suitable for heavy-duty applications. Diesel fuel is often more cost-effective than gasoline, and diesel-powered compressors typically offer better fuel efficiency and longer runtime. Diesel compressors are commonly used in construction sites, mining operations, and other industrial settings.

3. Natural Gas:

Natural gas is a clean-burning fuel option for gas air compressors. It is a popular choice in areas where natural gas infrastructure is readily available. Natural gas compressors are often used in natural gas processing plants, pipeline operations, and other applications where natural gas is abundant. Natural gas-powered compressors offer lower emissions compared to gasoline or diesel, making them environmentally friendly.

4. Propane:

Propane, also known as liquefied petroleum gas (LPG), is commonly used as a fuel in gas air compressors. Propane-powered compressors are popular in construction, agriculture, and other industries where propane is used for various applications. Propane is stored in portable tanks, making it convenient for use in portable compressors. Propane-powered compressors are known for their clean combustion, low emissions, and easy availability.

5. Biogas:

In specific applications, gas air compressors can be fueled by biogas, which is produced from the decomposition of organic matter such as agricultural waste, food waste, or wastewater. Biogas compressors are used in biogas production facilities, landfills, and other settings where biogas is generated and utilized as a renewable energy source. The use of biogas as a fuel in compressors contributes to sustainability and reduces dependence on fossil fuels.

It’s important to note that the availability and suitability of these fuel options may vary depending on the region, infrastructure, and specific application requirements. When selecting a gas air compressor, it’s crucial to consider the compatibility of the compressor with the available fuel sources and to follow the manufacturer’s guidelines regarding fuel selection, storage, and safety precautions.

China supplier Air Separation Equipment Cryogenic Compressor for Liquid Oxygen and Nitrogen   air compressor repair near meChina supplier Air Separation Equipment Cryogenic Compressor for Liquid Oxygen and Nitrogen   air compressor repair near me
editor by CX 2024-03-29